Page 97 - 《橡塑技术与装备》2024年10期
P. 97

测试与分析                                                谢卓立 等·具有电磁屏蔽效能的导热塑料的研究进展


                合材料,结果表明,当 LMPA 的体积分数为 50% 时,                         Manufacturing, 2021, 149:106 574.
                复合材料的 EMI SE 和 TC 分别达到了 68.79 dB 和 6.38           [6]   TAN X, LIU  T, ZHOU  W, et al. Enhanced Electromagnetic
                                                                      Shielding and Thermal Conductive Properties of Polyolefin
                W/(mk)。张萍    [24]  通过聚多巴胺(PDA)和葡萄糖在                   Composites with a  Ti 3 C 2 Tx  MXene/Graphene Framework
                PVDF 微球表面还原银离子,制备了 PVDF@PDA@                          Connected by a Hydrogen-Bonded Interface[J]. ACS nano,
                Ag 微球,并通过热压工艺制备了 PVDF@PDA@Ag/                         2022, 16(6):9 254-9 266.
                                                                  [7]   RAAGUL AN K, BRAVE E NT H R, KIM BM, e t  a l .
                LMPA 复合材料,结果表明,在银界面层的协同作用                             An effective utilization of MXene and its effect on
                下,热压加工中流动的 LMPA 定向包覆在微球表面,                            electromagnetic interference shielding: flexible, free-
                形成了隔离结构,提升了复合材料的导热性能、降低                               standing and thermally conductive composite from MXene–
                                                                      PAT–poly(p-aminophenol)–polyaniline co-polymer[J]. RSC
                了复合材料的线膨胀系数,且当 LMPA 的体积分数为
                                                                      Advances, 2020, 10(3):1 613-1 633.
                10% 时,复合材料的 EMI  SE 和 TC 分别达到了 48.1               [8]   JIN X,  WANG  J, DAI  L,  et  al.  Flame-retardant  poly(vinyl
                dB 和 1.79 W/(mk)。                                     alcohol)/MXene multilayered films with outstanding
                                                                      electromagnetic  interference shielding and  thermal
                                                                      conductive performances[J]. Chemical Engineering Journal,
                4 结语                                                  2020, 380:122 475.
                    目前,对具有电磁屏蔽效能的导热塑料的研究还                         [9]   Naguib M, Mashtalir O, Carle J, et al.  Two-Dimensional
                                                                      Transition Metal Carbides [J]. ACS nano, 2012, 6(2):1 322-
                处于发展阶段,未广泛应用在生活中,一是因为制造
                                                                      1 331.
                工艺复杂、成本高 ;二是填料的增加会导致材料力学                          [10]  ZHANG  Y, RUAN K, GU J, et al. Flexible Sandwich-
                性能、加工性能降低。但是,随着 5G  时代的来临,                            Structured Electromagnetic Interference Shielding
                                                                      Nanocomposite Films with Excellent Thermal Conductivities
                电磁屏蔽 / 导热材料需求的增加,工艺技术的不断升
                                                                      [J]. Small, 2021, 17(42):2101951.
                级,国内相关产业链公司也将迎来新的增长机遇。未                           [11]  ZHANG Y, RUAN K, ZHOU K, et al. Controlled Distributed
                来具有电磁屏蔽效能的导热材料在满足市场多重性能                               Ti 3 C 2 Tx  Hollow Microspheres on  Thermally Conductive
                的前提下会向轻量化方向发展,同时也会以危害较低                               Polyimide Composite Films for Excellent Electromagnetic
                                                                      Interference Shielding[J]. Advanced materials (Deerfield
                的吸收损耗为主,减少反射损耗,创造出更加经济环
                                                                      Beach, Fla.), 2023, 35(16).
                保的电磁屏蔽 / 导热材料。                                    [12]  Z HANG  Y,  TANG S, Z HANG Q, e t  a l . Const ruc t i ng
                                                                      interconnected asymmetric conductive network in  TPU
                                                                      fibrous film: Achieving low-reflection electromagnetic
                参考文献 :                                                interference shielding and surperior thermal conductivity[J].
                [1]   TIAN K, HU D,  WEI Q, et al. Recent progress on
                    multifunctional electromagnetic interference shielding   Carbon, 2023, 206:37-44.
                    polymer composites[J]. Journal of Materials Science &   [13]  ZHANG P, DING X,  WANG  Y, et al. Segregated double
                    Technology, 2023, 134:106-131.                    network enabled effective electromagnetic shielding
                [2]   LI  Y, QIAN  Y, JIANG Q, et al.  Thermally conductive   composites with extraordinary electrical insulation and
                    p o l y m e r - b a se d  c o m p o si t e s:  f u n d a m e n t a l s p r o g r e ss   thermal conductivity[J]. Composites Part A, 2019, 117:56-
                    and  flame  retardancy/anti-electromagnetic  interference   64.
                    design[J]. Journal of Materials Chemistry C, 2022,   [14]  LI J,  WANG  Y,  YUE  T, et al. Robust electromagnetic
                    10(39):14 399-14 430.                             interference shielding, joule heating, thermal conductivity,
                [3]   LI Y, ZHANG D, ZHOU B, et al. Synergistically enhancing   and anti-dripping performances of polyoxymethylene with
                    electromagnetic interference shielding performance and   uniform distribution and high content of carbon-based
                    thermal conductivity of polyvinylidene fluoride-based   nanofillers[J].Composites Science and  Technology, 2021,
                    lamellar film with MXene and graphene[J]. Composites Part   206:108681.
                    A, 2022, 157:106 945.                         [15]  PENG Z, LV Q, JING J, et al. FDM-3D printing LLDPE/
                [4]   GAO Q, PAN Y, ZHENG G, et al. Synergistic toughening in   BN@GNPs composites with double network structures for
                    the interleaved carbon fibre reinforced epoxy composites   high-efficiency thermal conductivity and electromagnetic
                    by thermoplastic resin and nanomaterials[J].  Advanced   interference shielding[J]. Composites Part B, 2023, 251:110
                    Composites and Hybrid Materials, 2021, 4(2):274-285.  491.
                [5]   VU MC, MANI D, KIM JB, et al. Hybrid Shell of MXene   [16]  ZHAO J, WANG C, WANG C, et al. Significant enhancement
                    and Reduced Graphene Oxide Assembled on PMMA Bead   of  thermal  conductivity  and  EMI  shielding  performance  in
                    Core towards Tunable Thermoconductive and EMI Shielding   PEI composites via constructing 3D microscopic continuous
                    Nanocomposites[J]. Composites Part A: Applied Science and   filler network[J]. Colloids and Surfaces A: Physicochemical



                      年
                2024     第   50 卷                                                                      ·49·
   92   93   94   95   96   97   98   99   100   101   102